
2020 REPORT

Connecting Vulnerability and Threat Analysis with Real-world
Implications in Applications and APIs

2020 APPLICATION
SECURITY OBSERVABILITY
REPORT

2020 APPLICATION SECURITY OBSERVABILITY REPORT

EXECUTIVE SUMMARY P03

INTRODUCTION

OVERALL VULNERABILITIES:
STILL ALL TOO COMMON

P07

P08

P15

• SIDEBAR: Ranking the Severity of Vulnerabilities

VULNERABILITIES BY INDUSTRY:
VULNERABILITIES ARE VERTICALLY AGNOSTIC

P45CONCLUSION

• SIDEBAR: Government and Financial Services: Lower
 Overall Vulnerabilities, Higher Serious Vulnerabilities

P20

REMEDIATION TIMELINES:
ADDRESSING PROBLEMS MORE QUICKLY

• SIDEBAR: Remediation Speed in Context

P30

OPEN-SOURCE LIBRARIES:
DRIVING INNOVATION AND INTRODUCING RISK

• SIDEBAR: Challenges for Open-source Version Control

• SIDEBAR: Why So Many New Newer CVEs?

P36

ATTACKS:
RELENTLESS VOLUME

• SIDEBAR: Insecure Deserialization

• SIDEBAR: Putting It All Together: The Top 6 Application
 Risks Based on Real-world Data

TABLE O F CO NTENTS

FOREWORD P01

01 | FO REWO RD At the same time, with individual applications experiencing over 13,000 attacks each month, organiza-

tions must ensure the same protections they have in place for development are extended to software in

production. Data shows that 98% of these attacks are probes and do not hit an existing vulnerability. But

even with just 2% reaching a vulnerability, this poses serious risk and requires a concerted security

approach from development and into production.

Security debt (viz., the accumulation of unresolved vulnerabilities) certainly plays an important role in

defining risk. Report data shows that those with below-average security debt have a significantly better

risk posture than those organizations that allow vulnerabilities to fester. Indeed, vulnerabilities that age

beyond 90 days have a greater likelihood of going unresolved for more than a year.

Without open-source frameworks and libraries, modern software development simply would be unable to

meet the aggressive velocity and agility demands businesses now expect. But more than half of

open-source libraries are inactive. Once again, this level of observability is crucial in helping organizations

determine which libraries matter—and do not—and how they prioritize version updates.

We designed our 2020 report with the intent of enabling organizations to fully embrace the potential

modern software offers to all industries and business units. And by making security observable, we

believe development, security, and operations teams will be empowered to collaborate—achieving the

high velocity and automated software assurance required in today’s digital world.

Sincerely,

JEFF WILLIAMS
CTO AND CO-FOUNDER

DAVID LINDNER
DIRECTOR OF APPLICATION SECURITY

012020 APPLICATION SECURITY OBSERVABILITY REPORT

The importance of digital transformation has never been more important than it is today. Competitive

differentiation is tethered to an organization’s ability to deliver new customer experiences, tap new

revenue opportunities, lower costs, and improve efficiencies through the development of new applications.

Contrast Labs is very excited to share its research findings over the past year with the intent that they will

guide organizations in transforming their businesses through digital innovation while ensuring application

security. More applications, more application programming interfaces (APIs), more connections and

transactions, and more data create a broader application attack surface—and this has not gone unno-

ticed by cyber criminals. Nearly one-half of data breaches this past year were the result of application

vulnerabilities—more than double the previous year.

You will notice that this year’s report is broken into four main sections—vulnerabilities, attacks, median

and mean time to remediate, and open-source dependencies and risks. You can read these individually or

in aggregate. The report also includes an analytical breakdown across industry segments and languages

that provide additional direction and insights. The close of the report aggregates the data into key

takeaways for development, security, and operations leaders.

Not every vulnerability should be treated the same. Upwards of 96% of applications contain at least one

vulnerability, yet only 26% of them have a serious vulnerability. It is impossible to fix all vulnerabilities at

once, and organizations must prioritize vulnerability remediation to effectively and efficiently manage

application risk.

At the same time, with individual applications experiencing over 13,000 attacks each month, organiza-

tions must ensure the same protections they have in place for development are extended to software in

production. Data shows that 98% of these attacks are probes and do not hit an existing vulnerability. But

even with just 2% reaching a vulnerability, this poses serious risk and requires a concerted security

approach from development and into production.

Security debt (viz., the accumulation of unresolved vulnerabilities) certainly plays an important role in

defining risk. Report data shows that those with below-average security debt have a significantly better

risk posture than those organizations that allow vulnerabilities to fester. Indeed, vulnerabilities that age

beyond 90 days have a greater likelihood of going unresolved for more than a year.

Without open-source frameworks and libraries, modern software development simply would be unable to

meet the aggressive velocity and agility demands businesses now expect. But more than half of

open-source libraries are inactive. Once again, this level of observability is crucial in helping organizations

determine which libraries matter—and do not—and how they prioritize version updates.

We designed our 2020 report with the intent of enabling organizations to fully embrace the potential

modern software offers to all industries and business units. And by making security observable, we

believe development, security, and operations teams will be empowered to collaborate—achieving the

high velocity and automated software assurance required in today’s digital world.

Sincerely,

JEFF WILLIAMS
CTO AND CO-FOUNDER

DAVID LINDNER
CHIEF INFORMATION SECURITY OFFICER

The importance of digital transformation has never been more important than it is today. Competitive

differentiation is tethered to an organization’s ability to deliver new customer experiences, tap new

revenue opportunities, lower costs, and improve efficiencies through the development of new applications.

Contrast Labs is very excited to share its research findings over the past year with the intent that they will

guide organizations in transforming their businesses through digital innovation while ensuring application

security. More applications, more application programming interfaces (APIs), more connections and

transactions, and more data create a broader application attack surface—and this has not gone unno-

ticed by cyber criminals. Nearly one-half of data breaches this past year were the result of application

vulnerabilities—more than double the previous year.

You will notice that this year’s report is broken into four main sections—vulnerabilities, attacks, median

and mean time to remediate, and open-source dependencies and risks. You can read these individually or

in aggregate. The report also includes an analytical breakdown across industry segments and languages

that provide additional direction and insights. The close of the report aggregates the data into key

takeaways for development, security, and operations leaders.

Not every vulnerability should be treated the same. Upwards of 96% of applications contain at least one

vulnerability, yet only 26% of them have a serious vulnerability. It is impossible to fix all vulnerabilities at

once, and organizations must prioritize vulnerability remediation to effectively and efficiently manage

application risk.

022020 APPLICATION SECURITY OBSERVABILITY REPORT

02 | EXECUT IVE S UM M A RY

Contrast’s “2020 Application Security Observability Report” provides insights gleaned from analysis of

aggregate telemetry generated from applications during development, testing, and operations from

Contrast Security customers between June 2019 and May 2020. Key findings include:

• Vulnerabilities. Nearly all applications have at least one vulnerability, and more than one-quarter

have a serious one. 11% of applications have more than six serious vulnerabilities. Well over half

of applications have insecure configuration and sensitive data exposure vulnerabilities. Notably,

twice as many Java applications have at least one serious vulnerability than .NET ones.

• Time to remediation. Contrast customers achieved a median time to remediate of seven days

as compared to 121 days for customers of one static application security testing (SAST) vendor.

The differences are even more dramatic when serious vulnerabilities are examined, with 25%

being remediated in one day and 75% in 16 days. This faster remediation time translates

into both lower risk and security debt—with Contrast customers achieving a median time to

remediation of just one day. At the same time, customers with below-average security debt (viz.,

fewer vulnerabilities) see a 1.7x better risk posture than all customers.

• Open-source libraries. The average application has content from 32 different libraries, though

only 45% of those libraries are actually used by the application. The top Common Vulnerabilities

and Exposures (CVEs) for software written in Java have significantly higher Common Vulnerability

Scoring System (CVSS) scores than the CVSS scores for the top .NET CVEs, suggesting higher

risk for Java applications. Organizations should manage open-source libraries in such a way that

the versions they use do not put them at risk, as the use of older versions can result in increased

security debt.

032020 APPLICATION SECURITY OBSERVABILITY REPORT

• Attacks. On average, each application endured more than 13,000 attacks per month in the past

 year, with injection, cross-site scripting, and broken access control topping the attack-vector list.

 Fortunately, 98% of attacks do not hit an existing vulnerability. The high volume of attempts to

 infiltrate applications accentuates the need to effectively prioritize remediations and take steps to

 block attacks on applications in production. Organizations can protect themselves by taking a

 strategic, risk management-based approach to application security. This means prioritizing

 vulnerabilities according to the risk they pose, which requires organizations to have actionable

 data not only at an industry level but also for the specific organization.

042020 APPLICATION SECURITY OBSERVABILITY REPORT

KEY F I ND INGS

MOST COMMON SER IOU S VU LNE R AB IL IT IE S :

have at least 6 SERIOUS VULNERABILITIES 11%

15%

13%

CROSS-SITE SCRIPTING

BROKEN ACCESS CONTROL

6%SQL INJECTION

 of applications have at least 1 VULNERABILITY96%
have at least 1 SERIOUS VULNERABILITY26%

052020 APPLICATION SECURITY OBSERVABILITY REPORT

THE AVERAGE APPLICATION CONTAINS CODE FROM
32 DIFFERENT LIBRARIES BUT ONLY 14 ARE ACTIVE

MEDIAN TIME TO REMEDIATION FOR CONTRAST CUSTOMERS:
7 DAYS COMPARED WITH 121 DAYS WITH SAST

86%+ OF OPEN-SOURCE LIBRARY USES DO NOT
USE THE LATEST VERSION

25% OF SERIOUS VULNERABILITIES REMEDIATED IN
1 DAY—COMPARED WITH 19 DAYS WITH SAST

MEAN TIME TO REMEDIATION: 67 DAYS
(32 DAYS FOR ORGANIZATIONS WITH BELOW-AVERAGE SECURITY DEBT)

13,279 AVERAGE ATTACKS PER APPLICATION, PER MONTH

60%+ GROWTH RATE FOR THE TOP FIVE VULNERABILITY
ATTACK VECTORS OVER THE PAST YEAR

COMMAND INJECTION ATTACKS INCREASED BY 179%

062020 APPLICATION SECURITY OBSERVABILITY REPORT

Figure 1. Percent of applications with reported
vulnerabilities and serious vulnerabilities.

07

Contrast’s “2020 Application Security Observability Report” analyzes application security (AppSec) trends

for the past 12 months ending on May 31, 2020. The goal of the research, which was performed by

Contrast Labs, is to provide readers with a comprehensive view of the state of application vulnerabilities

and attacks, time to remediation, and usage of open-source code. The dataset includes vulnerabilities

identified by Contrast Assess, attacks detected by Contrast Protect, and open-source library data gathered

by Contrast OSS.

This report summarizes application vulnerability and attack trends over the past year and includes

actionable insights for security, development, and operations leaders and practitioners. The data is also

broken down by industry and programming language. Contrast Security is the only player in the industry

that provides perspective across the application life cycle by analyzing security vulnerabilities, library

issues, and attacks in a single report, with bimonthly updates published to complement this annual report

and provide security, development, and operations teams with regular trends and insights.

03 | INTRO D UCT IO N

2020 APPLICATION SECURITY OBSERVABILITY REPORT

VULNERABILITIES SERIOUS VULNERABILITIES

%
 O

F
AP

PL
IC

AT
IO

NS
 W

IT
H

1
OR

 M
OR

E

96%

26%

082020 APPLICATION SECURITY OBSERVABILITY REPORT

04
OVERALL
VULNERABILITIES:
STILL ALL TOO
COMMON

04
Contrast Labs data confirms that an overwhelming majority of applications have vulnerabilities at some

point in the software development life cycle (SDLC). Overall, 96% of applications have at least one

vulnerability, 26% have at least one serious vulnerability (see sidebar: "Ranking the Severity of

Vulnerabilities," page 13), and 11% have at least six serious vulnerabilities (Figures 1 and 2).

04 | OVERALL VULN E RA B IL IT IE S : ST ILL A LL
TOO CO MMO N

09

Figure 2. Percent of applications by number of reported
vulnerabilities and serious vulnerabilities.

% OF APPLICATIONS BY NUMBER OF VULNERABILITIES

0% 10%

4% 46% 34% 8% 3% 5%

74% 16% 5% 2%

1%

2%

20% 30% 40% 50% 60% 70% 80% 90% 100%

VULNERABILITIES

SERIOUS
VULNERABILITIES

0

1 TO 5

6 TO 20

21 TO 50

51 TO 100

100+

2020 APPLICATION SECURITY OBSERVABILITY REPORT

Figure 3. Percent of applications with reported vulnerabilities
and serious vulnerabilities by specific vulnerability category.

BY VULNERABILITY CATEGORY

Well over half of applications have vulnerabilities in two categories (Figure 3): insecure configuration

(72%) and sensitive data exposure (64%). Among serious vulnerabilities, the most common categories are

cross-site scripting (XSS; 15%), broken access control (13%), and SQL injection (6%). It should be noted

that almost all XSS and injection vulnerabilities that occur are serious.

Analyzing the frequency of vulnerabilities, Contrast Labs found that the most common serious

vulnerabilities—XSS, broken access control, and injection—are most likely to occur multiple times in

102020 APPLICATION SECURITY OBSERVABILITY REPORT

IN
SE

CU
RE

 C
ON

FI
GU

RA
TI

ON

SE
NS

IT
IV

E
DA

TA
 E

XP
OS

UR
E

BR
OK

EN
 A

UT
HE

NT
IC

AT
IO

N

BR
OK

EN
 A

CC
ES

S
CO

NT
RO

L

CR
OS

S-
SI

TE
 S

CR
IP

TI
NG

IN
SU

FF
IC

IE
NT

 L
OG

GI
NG

 A
ND

 M
ON

IT
OR

IN
G

UN
SA

FE
 D

AT
A

HA
ND

LI
NG

SQ
L

IN
JE

CT
IO

N

XM
L

EX
TE

RN
AL

 E
NT

IT
IE

S
(X

XE
)

DE
NI

AL
 O

F
SE

RV
IC

E

LD
AP

 IN
JE

CT
IO

N

IN
SE

CU
RE

 D
ES

ER
IA

LI
ZA

TI
ON

EX
PR

ES
SI

ON
 L

AN
GU

AG
E

IN
JE

CT
IO

N

SM
TP

 H
EA

DE
R

IN
JE

CT
IO

N

XP
AT

H
IN

JE
CT

IO
N

HI
BE

RN
AT

E
IN

JE
CT

IO
N

RE
FL

EC
TI

ON
 IN

JE
CT

IO
N

CO
M

M
AN

D
IN

JE
CT

IO
N

NO
SQ

L
IN

JE
CT

IO
N

UN
SA

FE
 C

OD
E

EX
EC

UT
IO

N

72%

1%

64%

48%

26%

13%
16%

15% 13%
8% 6% 5%

3% 2% 1% 1% 1% 1% 1%

VULNERABILITIES

SERIOUS VULNERABILITIES

%
 O

F
AP

PL
IC

AT
IO

NS

LEAST PREVALENT
Figure 4. Median number of vulnerabilities per application
in descending order of vulnerability prevalence.

11

vulnerable applications. Applications that have XSS and SQL injection vulnerabilities had a median of more

than three reported instances of vulnerabilities in that category. In other words, half had at least that many

occurrences. For broken access control, applications had a median of two instances—60% fewer

vulnerability instances on average than expression language injection, which has a median of five instances.

2020 APPLICATION SECURITY OBSERVABILITY REPORT

1

1

1

1

1

1

4

4

2

2

2

2

2

5

5

3

3

3

3

3

MOST PREVALENT

INSECURE CONFIGURATION

SENSITIVE DATA EXPOSURE

BROKEN AUTHENTICATION

BROKEN ACCESS CONTROL

CROSS-SITE SCRIPTING

INSUFFICIENT LOGGING AND MONITORING

UNSAFE DATA HANDLING

SQL INJECTION

XML EXTERNAL ENTITIES (XXE)

DENIAL OF SERVICE

LDAP INJECTION

INSECURE DESERIALIZATION

XPATH INJECTION

SMTP HEADER INJECTION

HIBERNATE INJECTION

EXPRESSION LANGUAGE INJECTION

COMMAND INJECTION

REFLECTION INJECTION

NOSQL INJECTION

UNSAFE CODE EXECUTION

VU
LN

ER
AB

IL
IT

IE
S

BY
 D

ES
CE

ND
IN

G
PR

EV
AL

EN
CE

 O
RD

ER

MEDIAN NUMBER OF VULNERABILITIES

Figure 5. Percent of applications by number of reported
vulnerabilities and serious vulnerabilities, by application language.

12

On average, applications only reported vulnerabilities in three distinct categories and two distinct serious

risk categories. Depending on the specific vulnerability type, a smaller number of categories could be

good news for developers, as a single code change can potentially address multiple instances of a

vulnerability. For instance, many configuration vulnerabilities can be fixed with code changes in a small

number of places. As an example, vulnerabilities related to injection types can also be fixed with

2020 APPLICATION SECURITY OBSERVABILITY REPORT

JAVA

.NET

.NET CORE

NODE

84% 10%

1%

1%

3% 2%

73% 18% 5%

1%

3%

80% 13% 4%

1%

2%

58% 23% 9% 4% 2%3%

% OF APPLICATIONS BY SERIOUS VULNERABILITIES COUNT

0 1 TO 5 6 TO 20 21 TO 50 51 TO 100 100+

3% 27% 45% 11% 5% 8%

3%

12%

17%

59%

56%

60%

28%

23%

15%

1%

1%

6%

6%

2%

2% 3%

2%

4%

JAVA

.NET

.NET CORE

NODE

% OF APPLICATIONS BY VULNERABILITIES COUNT

adjustments to only one or two locations, as there could

be natural or architected bottlenecks that result in data

flows all being processed by a common piece of code. In

addition, identifying multiple vulnerabilities in a category

can help security teams as they continuously improve the

baseline for security testing.

BY LANGUAGE

While it is increasingly common for different parts of an

application to be written in different languages, it is worth

noting that Java applications are more likely to contain

serious vulnerabilities than other languages in the dataset,

most notably .NET. Specifically, over twice as many Java

applications have at least one serious vulnerability

compared to .NET and .NET Core—42% versus 16% and

20%, respectively (Figure 5). And 18% of Java

applications have at least six serious vulnerabilities, while

only 7% of .NET ones have that many. Particular problem

areas for Java applications include broken access control

(26%) and XSS (22%; Figure 6). This can be traced to a

lack of standardization in Java, which is an open-source

language—compared with .NET, which is highly

standardized and controlled by Microsoft.

13

SIDEBAR: RANKING THE SEVERITY OF
VULNERABILITIES

Open Web Application Security Project

(OWASP) is a worldwide nonprofit focused on

improving the security of software. The OWASP

Top 10 is a document that reflects a broad

consensus of vulnerability types in web

applications that represent the most critical

security risks for organizations. The latest

version was released in 2017, with the next

version scheduled in 2021. OWASP states that

“[c]ompanies should adopt this document and

start the process of ensuring that their web

applications minimize these risks,”1 but does

not rank them according to the risk they pose.

Contrast Labs goes a step further by

independently evaluating the severity of

vulnerabilities by assigning them an impact

rating (how damaging would it be if it were

exploited) and a likelihood rating (what are the

chances of it being exploited). The default

rankings are built into the Contrast Agent’s

ruleset, and organizations can adjust these

rules to fit their needs. In this report,

vulnerabilities identified as serious are rated as

either High or Critical, representing 28% of all

vulnerabilities (Figure 7). Notably, 42% of

vulnerabilities are rated as Medium in both

likelihood and impact. For organizations that

prioritize remediation according to risk, these

vulnerabilities provide a clearly delineated

second tier.

2020 APPLICATION SECURITY OBSERVABILITY REPORT

Figure 6. Percent of applications with reported serious
vulnerabilities by application language and overall.

Figure 7. Percent of vulnerabilities
reported by likelihood and impact,
with their overall severity score.

142020 APPLICATION SECURITY OBSERVABILITY REPORT

CROSS-SITE SCRIPTING

BROKEN ACCESS CONTROL

SQL INJECTION

XML EXTERNAL ENTITIES (XXE)

LDAP INJECTION

0% 5% 10% 15% 20% 25% 30%

% OF APPLICATIONS WITH AT LEAST 1 VULNERABILITY FOR THEIR TOP 5 MOST
PREVALENT SERIOUS VULNERABILITIES

JAVA .NET OVERALL.NET CORE NODE

CRITICAL

HIGH

MEDIUM

LOW

NOTE

SEVERITY:

IM
PA

CT

LOW

MEDIUM HIGH

LIKELIHOOD

HIGH

MEDIUM

LOW

1%

0.1%

24%

7%

42%

0.5%

5%

16%

4%

152020 APPLICATION SECURITY OBSERVABILITY REPORT

05
VULNERABILITIES
BY INDUSTRY:
VULNERABILITIES
ARE VERTICALLY
AGNOSTIC

162020 APPLICATION SECURITY OBSERVABILITY REPORT

Contrast Labs also analyzed vulnerability data by industry. It could be argued that all companies are now

software companies, but organizations in different industries deliver applications for vastly different

purposes.2 As a result, it might not be surprising for vulnerability data to vary greatly from vertical to

vertical.

On the other hand, all developers use similar languages and tools, and analysis of Contrast Labs data

suggests that vulnerability trends are remarkably uniform across the board. The percentage of

applications with at least one serious vulnerability ranged from a high of 36% in government to a low of

19% in education (Figure 8).

05 | VULNERAB IL IT IE S BY INDU STRY :
VULNERAB IL IT IES ARE VE RT IC ALLY AG NOST IC

Figure 8. Percent of applications
by reported serious vulnerability
counts, by industry and overall.

12%

3%
1%
1%
2%

19%

6%

3%

2%
2%

19%

9%

5%

3%
1%

18%

6%

2%
1%
2%

14%

4%

2%
1%
2%

16%

5%

3%
2%
2%

12%

6%

3%

3%
1%

EDUCATION FINANCIAL
SERVICES

GOVERNMENT HEALTHCARE HIGH
TECHNOLOGY

MANUFACTURING RETAIL AND
HOSPITALITY

% OF APPLICATIONS BY SERIOUS VULNERABILITY COUNT

1 TO 5

6 TO 20

21 TO 50

51 TO 100

100+

OVERALL AVERAGE:
26% OF APPLICATIONS
HAVE 1 OR MORE
SERIOUS
VULNERABILITIES

05

172020 APPLICATION SECURITY OBSERVABILITY REPORT

Most industries have a small but significant subset of applications with a large proportion of overall

vulnerabilities. In every vertical except high technology and education, more than 10% of applications had

six or more serious vulnerabilities. XSS and broken access control are the two most common serious

vulnerabilities in every industry (Figure 9).

Figure 9. Percent of applications with at least 1 reported, serious
vulnerability by industry and vulnerability category.

CROSS-SITE SCRIPTING

BROKEN ACCESS CONTROL

XML EXTERNAL ENTITIES (XXE)

INSECURE CONFIGURATION

INSECURE DESERIALIZATION

SQL INJECTION

LDAP INJECTION

XPATH INJECTION

EXPRESSION LANGUAGE INJECTION

HIBERNATE INJECTION

NOSQL INJECTION

COMMAND INJECTION

0% 5% 10% 15% 20% 25%

% OF APPLICATIONS WITH SERIOUS VULNERABILITIES

EDUCATION

FINANCIAL SERVICES

GOVERNMENT

HEALTHCARE

HIGH TECHNOLOGY

MANUFACTURING

RETAIL AND HOSPITALITY

18

Figure 10. Percent of applications by vulnerability

count, by application language and overall.

34%

44%

5%
3%
6%

35%

43%

8%

6%
4%

29%

41%

12%

8%
5%

34%

45%

12%

2%
4%

59%

25%

7%
3%
4%

47%

23%

10%

5%

7%

43%

35%

10%

4%
4%

EDUCATION FINANCIAL
SERVICES

GOVERNMENT HEALTHCARE HIGH
TECHNOLOGY

MANUFACTURING RETAIL AND
HOSPITALITY

% OF APPLICATIONS BY VULNERABILITY COUNT

1 TO 5

6 TO 20

21 TO 50

51 TO 100

100+

OVERALL AVERAGE: 96% OF APPLICATIONS ARE VULNERABLE

SIDEBAR: GOVERNMENT AND FINANCIAL SERVICES: LOWER OVERALL
VULNERABILITIES, HIGHER SERIOUS VULNERABILITIES

While vulnerability rates are remarkably similar across industries, Contrast Labs data indicates that two

verticals have more than the others—government and financial services. In the government sector, 93% of

applications have at least one vulnerability, and more than one-third (36%) have at least one serious

vulnerability (Figures 8 and 10). The 93% figure is actually tied for the second lowest percentage among

industries we surveyed, but the 36% figure is the highest in our list.

As a group, federal, state, and local government entities tend to use older technology than most industries

in the private sector, and many use older languages in application development. This has been exemplified

by the sudden shortage of COBOL programmers during the surge in unemployment claims caused by the

COVID-19 pandemic.3 Government entities are more likely to outsource development and therefore often

19

have difficulty preventing vulnerabilities through the contracting process. Also, agencies often cannot

attract experts away from high-paying corporate security teams, making it difficult to hire an expert staff.

Financial services organizations also see serious vulnerabilities in more than 3 in 10 applications (32%), but

have a middling percentage of applications with any vulnerability (95%). At first glance, this vertical appears

to be the opposite of the government sector, deploying cutting-edge technology to win the business of

increasingly tech-savvy consumers and businesses. Ironically, this level of innovation may work to these

companies’ detriment when it comes to software vulnerabilities, as they tend to try things that have not

been tried before.4 They also are burdened by sheer numbers—huge application and application

programming interface (API) portfolios that change and adapt quickly. Growth by acquisition, platform

migration, moves to the cloud and containers, and other digital transformation initiatives can make AppSec

difficult for this industry.

202020 APPLICATION SECURITY OBSERVABILITY REPORT

06
REMEDIATION
TIMELINES:
ADDRESSING
PROBLEMS MORE
QUICKLY

21

Remediation timelines are a critical metric because the sooner a vulnerability is remediated, the less

expensive and time-consuming the fix is. One study finds that the cost of remediating a vulnerability in an

application already in production is 100 times the cost of addressing it during the design phase.5 In

addition, remediation that occurs late in the SDLC is likely to delay the rollout of the application.

Contrast Labs’ data shows a mean (average) time to remediate (MTTR) of 67 days for all vulnerabilities

and 36 days for serious ones (Figure 11). But those numbers tell only a small part of the story. The

median time to remediate—the time at which 50% of vulnerabilities have been resolved—is just seven

days, and 45% of all vulnerabilities and 62% of serious ones are resolved within just three days. Those

numbers increase to 65% and 83% after 50 days.

One interesting note: Vulnerabilities that are not remediated within 30 days tend to remain after 90 days.

Fully 79% of vulnerabilities and 65% of serious vulnerabilities not remediated within 30 days remain after

day 90. In these instances, security debt accumulates over time if vulnerabilities are not remediated

earlier in the SDLC—namely, the longer a vulnerability persists, the greater the likelihood that it will not be

remediated. Unless there is an organizational culture or security-level agreement (SLA) policy that dictates

a maximum age for vulnerabilities, this pattern will likely continue.

06 | R EMED IAT IO N T IM E L INE S : ADDRE SS ING
PROBLEMS MO RE QU IC K LY

2020 APPLICATION SECURITY OBSERVABILITY REPORT

Figure 11. Percent of vulnerabilities remaining
by days since first discovered.

22

BY VULNERABILITY TYPE

Going beyond the overall numbers, it becomes clear that the MTTR varies widely according to the type of

vulnerability (Figure 12). SQL injection vulnerabilities, for example, are resolved in an average of 10 days,

while vulnerabilities in the sensitive data exposure and broken authentication categories take more than

three months to close. These differences can be at least partially explained by organizations’ success in

prioritizing vulnerabilities by risk. Contrast Security customers’ MTTR for serious vulnerabilities is just over

half the MTTR for all vulnerabilities.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0 10 20 30 40 50 60 70 80 90

%
 O

F
VU

LN
ER

AB
IL

IT
IE

S
RE

M
AI

NI
NG

DAYS SINCE DISCOVERY

90 DAYS: 69% OF VULNERABILITIES
ARE REMEDIATED

90 DAYS: 87% OF SERIOUS
VULNERABILITIES ARE REMEDIATED

30 DAYS: 61% OF VULNERABILITIES
ARE REMEDIATED

30 DAYS: 79% OF SERIOUS
VULNERABILITIES ARE REMEDIATED

MTTR:
36 DAYS FOR SERIOUS
VULNERABILITIES

MTTR:
67 DAYS FOR ALL
VULNERABILITIES

VULNERABILITIES SERIOUS VULNERABILITIES

2020 APPLICATION SECURITY OBSERVABILITY REPORT

Figure 12. Mean time to remediate (MTTR)
vulnerabilities by vulnerability category.

BY INDUSTRY

When remediation data is analyzed by industry, interesting differences emerge (Figures 13 and 14). High

technology (86%) and manufacturing (85%) companies resolve far more vulnerabilities in the first 30 days

than education (43%) and government (50%). And these differences persist through at least day 100. Our

takeaway: Different industries—and different individual organizations—are further along in the maturity of

their DevSecOps integration than others, and these distinctions come out in time to resolution.

23

UNSAFE DATA HANDLING
42 DAYS

REFLECTION INJECTION
12 DAYS

NOSQL INJECTION INSUFFICIENT
LOGGING AND MONITORING

22 DAYS

CROSS-SITE SCRIPTING
EXPRESSION LANGUAGE INJECTION

30 DAYS INSECURE DESERIALIZATION
56 DAYS

HIBERNATE INJECTION
67 DAYS

SMTP HEADER INJECTION
92 DAYS

SENSITIVE DATA EXPOSURE
111 DAYS

SQL INJECTION
10 DAYS

0 10 20 30 40 50 60 70 80 90 100 110 120

COMMAND INJECTION
18 DAYS

BROKEN ACCESS CONTROL
25 DAYS

XPATH INJECTION
39 DAYS

XML EXTERNAL ENTITIES
45 DAYS

DAYS SINCE
DISCOVERY

INSECURE CONFIGURATION
66 DAYS

DENIAL OF SERVICE
79 DAYS

BROKEN AUTHENTICATION
96 DAYS

LDAP INJECTION
114 DAYS

2020 APPLICATION SECURITY OBSERVABILITY REPORT

242020 APPLICATION SECURITY OBSERVABILITY REPORT

Figure 13. Mean time to remediate (MTTR)
vulnerabilities and serious vulnerabilities by industry

Figure 14. Percent of all vulnerabilities and serious vulnerabilities
remediated within 30, 60, and 90 days of discovery, by industry.

EDUCATION VULNERABILITIES FINANCIAL SERVICES VULNERABILITIES GOVERNMENT VULNERABILITIES HEALTHCARE VULNERABILITIES

43%

63%
50%

72%
86% 85%

71%

52%

68%
55%

79%
88% 87% 87%

58%
70%

58%
80%

90% 89% 89%

30 DAYS 60 DAYS 90 DAYS

% OF ALL VULNERABILITIES REMEDIATED WITHIN

66%
55%

76%
83% 88%

95%

66%
75%

62%

79%
87% 91% 96%

78% 79%
66%

82%
89% 93% 96%

83%

30 DAYS 60 DAYS 90 DAYS

% OF SERIOUS VULNERABILITIES REMEDIATED WITHIN

MANUFACTURING VULNERABILITIES RETAIL AND HOSPITALITY VULNERABILITIESHIGH TECHNOLOGY VULNERABILITIES

SERIOUS VULNERABILITIES

ALL VULNERABILITIES

0 10 20 30 40 50 60 70 80 90 100 110 120
MTTR

HIGH TECHNOLOGY
23 DAYS

RETAIL AND
HOSPITALITY

51 DAYS

MANUFACTURING
104 DAYS

HEALTHCARE
55 DAYS

EDUCATION
73 DAYS

GOVERNMENT
94 DAYS

FINANCIAL SERVICES
80 DAYS

RETAIL AND HOSPITALITY
75 DAYS EDUCATION

107 DAYS

HEALTHCARE
112 DAYS

MANUFACTURING
105 DAYS

HIGH TECHNOLOGY
38 DAYS

GOVERNMENT
84 DAYS FINANCIAL SERVICES

110 DAYS

25

BY LEVEL OF SECURITY DEBT

Another lens through which to view time to remediation is the amount of security debt a company holds.

Security debt is represented by the backlog of vulnerabilities that still need to be remediated across the

organization.

These numbers vary widely: The mean backlog across all customers is 1,830 vulnerabilities as of June 1,

2019. The average organization sees 183 new vulnerabilities per month, three per application. However,

83% of applications see two or fewer vulnerabilities introduced per month.

Notwithstanding, the mean backlog does not reflect the fact that a relatively small number of applications

represent a relatively large percentage of the backlog. When considering the subset of customers whose

backlog is below the average of 1,830 vulnerabilities, the mean backlog is just 428 vulnerabilities—or 17

per application. And organizations with below-average security debt see fewer new vulnerabilities as

well—just 68 per month on average rather than 183 (translating to 1.7x lower risk).

Figure 15. MTTR vulnerabilities and serious vulnerabilities for all organizations
and organizations with smaller than average security debt.

0 10 20 30 40 50 60 70 80
MTTR: PER DAYS

ALL ORGANIZATIONS
36 DAYS

ALL ORGANIZATIONS
67 DAYS

ORGANIZATIONS WITH
SMALLER THAN AVERAGE

SECURITY DEBT
24 DAYS

ORGANIZATIONS WITH
SMALLER THAN AVERAGE

SECURITY DEBT
32 DAYS

SERIOUS VULNERABILITIES

ALL VULNERABILITIES

2020 APPLICATION SECURITY OBSERVABILITY REPORT

262020 APPLICATION SECURITY OBSERVABILITY REPORT

Figure 16. Days since discovery for all vulnerabilities remediated by all
organizations versus those with smaller than average security debt.

Figure 17. Days since discovery for serious vulnerabilities remediated by
all organizations versus those with smaller than average security debt.

ORGANIZATIONS WITH
SMALLER SECURITY DEBT

SERIOUS
VULNERABILITIES 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

25% REMEDIATED
1 DAY

50% REMEDIATED
1 DAY

DAYS SINCE DISCOVERY

75% REMEDIATED
5 DAYS

ALL ORGANIZATIONS
ALL VULNERABILITIES

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

25% REMEDIATED
1 DAY

50% REMEDIATED
7 DAYS

75% REMEDIATED
175 DAYS

DAYS SINCE DISCOVERY

75% REMEDIATED
8 DAYS

ORGANIZATIONS WITH
SMALLER SECURITY DEBT

ALL VULNERABILITIES 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

25% REMEDIATED
1 DAY

50% REMEDIATED
1 DAY

DAYS SINCE DISCOVERY

ALL ORGANIZATIONS
SERIOUS

VULNERABILITIES 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

25% REMEDIATED
1 DAY

50% REMEDIATED
1 DAY

DAYS SINCE DISCOVERY

75% REMEDIATED
16 DAYS

27

SIDEBAR: REMEDIATION SPEED IN CONTEXT

Three things should be noted with regard to the remediation data from the Contrast customer community. First, the

remediation speed calculated for June 2019 through May 2020 is much improved over the 2018 data from Contrast

Labs.8 This suggests that remediation rates are improving as the Contrast Security customer base grows, and as

organizations fully integrate its solutions into their SDLC.

The differences extend to MTTR. Organizations with below-average security debt have an MTTR of 32

days—less than half the MTTR for all organizations (Figure 15). And the time it takes to remediate 75% of

serious vulnerabilities is five days for those with below-average security debt, compared with 16 days for

all organizations (Figure 17).

Companies with high security debt face operational risk from cyber exploits and legal exposure from

potential release of customer information.6 When an organization faces such a challenge, one solution is to

implement a runtime application self-protection (RASP) solution such as Contrast Protect, which can

provide highly effective stopgap protection against exploitation of unresolved vulnerabilities in running

applications.7

Figure 18. Percent of vulnerabilities remaining

since discovery for Contrast and SAST customers.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0 30 60 90 120 150 180 210 240

%
 O

F
VU

LN
ER

AB
IL

IT
IE

S
RE

M
AI

NI
NG

DAYS SINCE DISCOVERY

ALL CONTRAST CUSTOMERS

SAST

270 300 330 360

Lorem ipsum dolor

MEDIAN CLOSED IN
7 DAYS

61% OF CLOSED
IN 30 DAYS

90% CLOSED
IN 1 YEAR

29% CLOSED
IN 30 DAYS

MEDIAN CLOSED IN
121 DAYS

71% CLOSED
IN 1 YEAR75% CLOSED

IN 8 DAYS

95% CLOSED
IN 1 YEAR

MEDIAN CLOSED IN
1 DAY

CONTRAST CUSTOMERS WITH
BELOW AVERAGE SECURITY DEBT

0%

28

Figure 19. Percent of vulnerabilities remediated within
3, 7, 14, 30, 60, 90, and 365 days using Contrast and SAST.

Second, Contrast customers’ remediation performance continues to outpace other industry players. As an example,

the latest report from one static application security testing (SAST) vendor9 shows an MTTR for all application

vulnerabilities of 171 days—compared with 67 days for Contrast Security customers. And they achieve a median

time to remediate of seven days as compared with 121 days for SAST (Figure 18).10

The differences remain significant when compared over a period of 90 days (Figure 19). And after a full year, only

10.3% of vulnerabilities (and only 2.3% of serious vulnerabilities) remain unresolved for Contrast customers. The

SAST customer base, on the other hand, sees 29.4% of vulnerabilities still not remediated after a full year. The

differences are even more dramatic when looking at serious vulnerabilities. Contrast customers see 25% of serious

vulnerabilities remediated in one day and 75% in 16 days, as compared with 19 days and 292 days, respectively, for

SAST (Figure 20).

45%

10%

61%

29%

90%

71%69%

45%

66%

38%

55%

21%

51%

16%

3 DAYS 7 DAYS 14 DAYS 30 DAYS 60 DAYS 90 DAYS 365 DAYS

% OF VULNERABILITIES REMEDIATED WITHIN

CONTRAST SAST

Third, for Contrast customers with below-average security debt (Figure 17), closed median for vulnerabilities

remediated is one day (Figure 18). And 75% of vulnerabilities are remediated within eight days. These numbers are

dramatic and confirmation that organizations with reduced security debt have significantly lower risk. A comparison

of Contrast customers with below-average security debt versus organizations using SAST tools shows a huge

difference—121x faster for median remediation time and 45x faster for remediation of 75% of vulnerabilities.

29

Figure 20. Days since discovery when 25%, 50%, and 75% of vulnerabilities
and serious vulnerabilities are remediated using Contrast versus SAST.

ALL
VULNERABILITIES

25% REMEDIATED
1 DAY

50% REMEDIATED
7 DAYS

DAYS SINCE DISCOVERY 75% REMEDIATED
175 DAYS

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

SERIOUS
VULNERABILITIES

25% REMEDIATED
1 DAY

75% REMEDIATED
16 DAYS

50% REMEDIATED
1 DAY

DAYS SINCE DISCOVERY

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

25% REMEDIATED
21 DAYS

50% REMEDIATED
121 DAYS

75% REMEDIATED
472 DAYS

25% REMEDIATED
19 DAYS

50% REMEDIATED
95 DAYS

75% REMEDIATED
292 DAYS

CONTRAST SAST

302020 APPLICATION SECURITY OBSERVABILITY REPORT

07
OPEN-SOURCE
LIBRARIES:
DRIVING INNOVATION
AND INTRODUCING
RISK

07

31

The development community is driving further efficiencies through an increased use of open-source code.

In fact, Forrester recently found a 40% jump in the use of open-source code in one year.11 At the same

time, the number of vulnerabilities logged in the CVE database is skyrocketing at an unprecedented clip.12

Contrast Labs telemetry verifies the prevalence of open-source code in organizations that use Contrast

OSS. The average application contains code from 32 different libraries, and 14 of those libraries on

average are active—that is, invoked by the application (Figure 21). The latter figure may be a surprise to

some readers, as software composition analysis (SCA) tools typically only report on the presence of a

library in an application. But this data from Contrast OSS shows that 56% of libraries present in an

average application are never invoked and create almost no risk. It is safe to ignore the code from these

libraries until a time when it is reasonable to do an update. Instead, organizations can prioritize

vulnerabilities in code that is actually run by the application.

07 | O PEN- S O URCE L IBRAR IE S : DR IV ING
INNOVAT IO N AND IN TRODU C ING R ISK

2020 APPLICATION SECURITY OBSERVABILITY REPORT

32

14
18

ACTIVE LIBRARIES INACTIVE LIBRARIES

AVERAGE NUMBER OF LIBRARIES

Figure 21. Average number of
libraries per application.

Figure 22. Average number of libraries
using the latest version.

With such a large number of libraries in use and the burgeoning volume of CVEs, version control is

important. Some companies try to ensure the latest “stable” version of each library is used in each

application. This is because successive versions of major libraries are released with remediation for newly

discovered CVEs, and a large percentage of potential vulnerabilities can therefore be avoided by simply

using a later version of each library.

While there are often good reasons not to use the very latest version of a library (see sidebar: "Challenges

for Open-source Version Control," page 34), developers tend to be many versions behind with the code

they use—especially in the Java programming language. Overall, among all instances of library use, only

14% used the latest version of the library in question, but that figure is 17% for .NET applications and only

9% for Java applications (Figure 22). Worse yet, when the top 10 Java libraries are used in applications

covered by Contrast OSS, nine of them use a version that is at least a dozen versions behind the latest

revision (Figure 23). Slightly better news can be found with .NET, where many of the top libraries are just

a handful of versions behind the latest.

14%

9%

17%

ALL APPLICATIONS JAVA .NET

% OF LIBRARIES USING THE LATEST VERSION

2020 APPLICATION SECURITY OBSERVABILITY REPORT

Figure 23. Percent of applications using the latest
version of the top 10 Java and .NET applications.

33

< 1%

12% 12% 12% 12%

15%

3%

10%
9%

SL
F4

J-
AP

I

SP
RI

NG
-C

OR
E

SP
RI

NG
-B

EA
NS

SP
RI

NG
-C

ON
TE

XT

CO
M

M
ON

S-
CO

DE
C

SP
RI

NG
-W

EB

SP
RI

NG
-A

OP

JA
CK

SO
N-

DA
TA

BI
ND

SP
RI

NG
-E

XP
RE

SS
IO

N

JA
CK

SO
N-

CO
RE

% OF APPLICATIONS USING THE LATEST VERSION OF THE TOP 10 JAVA LIBRARIES

< 1%

1% 1% < 1% < 1% 5% < 1%3%

72%

41%

1%

NE
W

TO
NS

OF
T.

JS
ON

.D
LL

LO
G4

NE
T.

DL
L

W
EB

GR
EA

SE
.D

LL

EN
TI

TY
FR

AM
EW

OR
K.

DL
L

AN
TL

R3
.R

UN
TI

M
E.

DL
L

OW
IN

.D
LL

EN
TI

TY
FR

AM
EW

OR
K.

SQ
LS

ER
VE

R.
DL

L

M
IC

RO
SO

FT
.O

W
IN

.H
OS

T.
SY

ST
EM

W
EB

.D
LL

W
EB

AC
TI

VA
TO

RE
X.

DL
L

M
IC

RO
SO

FT
.C

OD
ED

OM
.P

RO
VI

DE
RS

.

DO
TN

ET
CO

M
PI

LE
RP

LA
TF

OR
M

% OF APPLICATIONS USING THE LATEST VERSION OF THE TOP 10 .NET LIBRARIES

2020 APPLICATION SECURITY OBSERVABILITY REPORT

SIDEBAR: CHALLENGES FOR OPEN-SOURCE VERSION CONTROL

In general, the best strategy for developers is to keep open-source libraries as up to date as possible. However,

updating libraries can bring risk to an organization as well. While using the latest version of a library will address the

vast majority of vulnerabilities that would be in earlier versions of the code, doing so has the potential of breaking

something in the application. Having something stop working in an application after something else is updated is not

only frustrating to developers but can introduce business risk for the organization. Thus, the decision on whether to

update a library must take into account not only AppSec considerations but the organization’s overall risk

management portfolio.

Organizations have four acceptable choices when it comes to version decisions for open-source code:

 1. Choose the earliest available version of a library that addresses a specific vulnerability fixed, regardless of

 how old it is. The upside is that minimal changes are required to the software. The downside is that the

 process may have to be redone if another vulnerability is found.

 2. Choose the latest “stable” version of a library. The problem is that this is not well-defined. Some libraries

 pre-release versions that are not yet ready for prime time.

 3. Something in between options 1 and 2.

 4. Do nothing, and use a RASP solution to prevent vulnerabilities from being exploited. This option works for

 specific CVEs covered by the product.

34

The average application across all languages contains four CVEs—just over two that are rated either High

or Critical, which is concerning. All of the 10 most commonly found CVEs for Java were identified during

2019, but only one of the top 10 .NET vulnerabilities is that recent, and others go back as far as 2014.

Java CVEs are more serious as well, with nine of the top 10 receiving a CVSS score of 9.8 or higher. The

top 10 .NET vulnerabilities, on the other hand, all have a CVSS score below 7.6.

SIDEBAR: WHY SO MANY NEW NEWER CVES?

Since the CVE database was introduced in 1999, no more than 8,000 new vulnerabilities were added to it in a single

year until 2017, when nearly 15,000 were added. More than 16,000 were added in 2018 and more than 12,000 in

2019.13 Why the sudden surge? Several factors probably contribute to the phenomenon:

 • An increase in the number of libraries covered by the database,14 corresponding with a sharp increase

 in the use of open-source code by developers15

 • A simplified application process that makes it easier for developers to report vulnerabilities for inclusion

 in the database16

 • The increasing popularity of bug-bounty programs, which account for 8% of reported vulnerabilities17

 and saw a 27% increase in average payouts per bounty paid last year18

As the number of published vulnerabilities in open-source libraries proliferates, it becomes increasingly important

that developers use recent, stable, and secure versions of every library, ensuring that as many CVEs as possible are

remediated before the code hits an application.

35

362020 APPLICATION SECURITY OBSERVABILITY REPORT

08
ATTACKS:
RELENTLESS
VOLUME

08

37

A well-known characteristic of today’s overall threat landscape is an ever-increasing volume of attacks,

and application- and API-layer attacks are no exception. Contrast Labs finds that applications in

production were pummeled throughout 2019 with an average of 13,279 attacks per application per

month. An astounding 65% of applications were targeted by SQL injection attacks, 62% by broken access

control attacks, and 54% by XSS attacks.

08 | A TTACKS : RELE NTLE SS VOLU M E

%
 O

F
AP

PL
IC

AT
IO

NS
 T

AR
GE

TE
D

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

JU
NE

JU
LY

AU
GUST

SE
PT

EM
BER

OCT
OBER

NOVE
MBER

DEC
EM

BER

JA
NUAR

Y

FE
BRUAR

Y

MAR
CH

AP
RIL

MAY

BROKEN ACCESS CONTROL CROSS-SITE SCRIPTING EXPRESSION LANGUAGE INJECTION SQL INJECTION COMMAND INJECTION

Figure 24. Percent of applications targeted by attacks
on specific vulnerabilities each month.

2020 APPLICATION SECURITY OBSERVABILITY REPORT

38

For the five most common attack types, the volume of attacks has trended upward over the past 12

months—all near their 12-month high in May 2020 (Figure 24), with an average increase of 60% over

the 12-month period. The percentage of applications targeted with command injection attacks increased

by 79% over the past year—from 28% to 78%. Nearly 8 in 10 Java applications and 5 in 10 .NET

applications endured SQL injection attacks, while well over half of applications in both languages saw

broken access control and XSS attacks (Figure 25).

Not surprisingly, these three most common attack types match the three most common serious vulnerabilities

identified during development—albeit in a different order of prevalence (Figure 26). Applications released into

production with vulnerabilities in these categories are exposed to the high likelihood of a successful attack.

Figure 25. Percent of Java and .NET applications
targeted by attacks on specific vulnerabilities.

% OF APPLICATIONS TARGETED

JAVA .NET

BROKEN ACCESS
CONTROL

SQL INJECTION CROSS-SITE SCRIPTING COMMAND INJECTION EXPRESSION LANGUAGE
INJECTION

68%
56%

73%

50%
59% 56%

48%
59%

38%

9%

2020 APPLICATION SECURITY OBSERVABILITY REPORT

39

26%

LIKELIHOOD OF AN ATTACKLIKELIHOOD OF A VULNERABILITY

BROKEN ACCESS CONTROL

CROSS-SITE SCRIPTING

SQL INJECTION

DENIAL OF SERVICE

INSECURE DESERIALIZATION XML

EXTERNAL ENTITY INJECTION

EXPRESSION LANGUAGE INJECTION

COMMAND INJECTION

NOSQL INJECTION

16%

6%

3%

1%

5%

1%

0.3%

< 1%

62%

54%

65%

6%

1%

2%

25%

51%

4%

Figure 26. Likelihood of vulnerability and attack types.

BY EXPLOITABILITY

Fortunately, 98% of these attacks target vulnerabilities that are not present in a given application, but this

percentage is not consistent across all attack types. For example, command injection and SQL injection

attacks targeted very few exploitable vulnerabilities—0.3% and 1%, respectively. This results in less risk

associated with the attack types even though they make up the highest percentage of attacks and the first

and fourth most common attack types.

2020 APPLICATION SECURITY OBSERVABILITY REPORT

40

75%
20%

9%
29%

33%
68%

39%
44%

67%

67%

47%
52%

52%
79%

69%

83%
60%

53%
71%

61%

EXPRESSION LANGUAGE INJECTION

COMMAND INJECTION

CROSS-SITE SCRIPTING

SQL INJECTION

BROKEN ACCESS CONTROL

%
 O

F
AP

PL
IC

AT
IO

NS
 T

AR
GE

TE
D

RETAIL AND HOSPITALITY MANUFACTURING HIGH TECHNOLOGY FINANCIAL SERVICES

Figure 27. Percent of applications targeted by attacks
on specific vulnerabilities by industry.

2020 APPLICATION SECURITY OBSERVABILITY REPORT

BY INDUSTRY

Threat actors execute an extremely high volume of attacks because they realize that only a small

percentage of them will be successful. Yet, they also target more attacks on the most common serious

vulnerabilities, which in effect increases the odds that a small subset of attacks will be successful. As a

result, all industries see the highest volume of attacks in broken access control, command injection, XSS,

SQL injection, and expression language injection (Figure 27).

SIDEBAR: INSECURE DESERIALIZATION

Serialization is the process of converting an

object into a format that can be transmitted via

file system or network. The reverse process is

called deserialization—rebuilding serialized data

back into the original objects so they can be

used by web applications. This is where the risk

comes in. If the right controls are not in place,

attackers can serialize malicious objections that

look safe until they are deserialized, resulting in

a denial-of-service (DoS) attack or other

intrusion. Insecure deserialization is the seventh

most prevalent serious vulnerability for Contrast

customers, and only 1% of applications reported

attacks.

While not as common as it used to be, this can

still be dangerous. Organizations should

especially pay attention to Java applications,

where many deserialization risks continue to

persist. And security and operations teams can

always enable RASP to sandbox deserialization

to prevent harmful things from happening

during object hydration (viz., infiltration of data

with malicious code embedded).

As to specific industry attack trends, retail and hospitality

organizations were unusually targeted by broken access

control attacks, which impact 83% of applications in that

vertical. Expression language injection attacks target 75%

of retail and hospitality applications—46 percentage

points higher than any other industry. Fortunately, this is a

rare vulnerability in this industry, occurring in just 1% of

applications.

SQL injection attacks are most prevalent at high

technology and financial services organizations, and

manufacturing organizations see a high proportion of

command injection attacks.

2020 APPLICATION SECURITY OBSERVABILITY REPORT 41

SIDEBAR: PUTTING IT ALL TOGETHER: THE TOP SIX APPLICATION RISKS BASED ON
REAL-WORLD DATA

Analysis of data from actual Contrast customers provides Contrast Labs with a unique perspective on the threats

faced by development and security teams today. Based on the risk they present to organizations, Contrast Labs

identified the top six AppSec risks based on its understanding of custom-code vulnerabilities, open-source

vulnerabilities, and real attack data from production. Based on that information, we would like to propose some

strategic recommendations:

 • SQL Injection. A classic AppSec issue, SQL injection should still be considered as one of the top risks.

 SQL injection attacks were among the three most prolific attack types for the entire year. The

 prevalence, severity, and availability of free and easy testing tools of SQL injection have attracted

 attackers for decades. Contrast Security customers take SQL injection very seriously as they prioritize

 vulnerabilities to remediate, and as a result, this vulnerability category has the shortest MTTR.

 While Contrast Labs finds SQL injections’ exploitability rate to be just 1%, the high attack volume

 means that tens of thousands of SQL injection attempts are successful every year. SQL injection

 vulnerabilities are frequently rated as serious, partly because of the impact they can have when they are

 successful. When a cyber criminal infiltrates a database, the result can be devastating for an

 organization. To reduce risk, organizations should ban the use of nonparameterized queries and

 strongly consider adding RASP to protect applications in production.

 • Broken Access Control. Authorization is one of the most complex vulnerabilities. Because most

 authorization schemes are custom to a particular application, it is very difficult for automated tools and

 even human penetration testers and code reviewers to detect these vulnerabilities. It is similarly hard to

 detect these attacks in production. As a result, broken access control is still near the top of our

 vulnerability prevalence and attacker focus lists. Accordingly, Contrast Labs finds that broken access

 control is the second most prevalent serious vulnerability type and the second most common

 vulnerability targeted by an attack.

 Broken access control is a tremendously easy vulnerability for developers to introduce, as getting it right

 requires a lot of discipline across the entire codebase. The consequences of a successful attack can

 range from minor data leaks to full access to administrative functions. Contrast recommends

 centralizing access control code mechanisms, using standard framework mechanisms when possible,

42

 creating simple idioms for developers to follow, and deploying continuous testing to assure that access

 controls are in place and effective.

 • Cross-site Scripting (XSS). This is another classic AppSec vulnerability that has remained in the OWASP

 Top 10 since it was instituted. It is the most prevalent serious vulnerability in Contrast customers’

 applications, and the third most common vulnerability targeted by an attack. But while the vulnerability

 rates and attack rates are quite high, the numbers show that there are a small number of applications

 with very high XSS occurrence rates driving the numbers up.19

 When an application has one XSS vulnerability, XSS is most likely very prevalent throughout that

 application. The impact of XSS is not as serious as the other vulnerabilities listed here, as a successful

 XSS attack results only in compromising a single user’s browser. Still, a crafty attacker might be able to

 worm an XSS or perform a mass attack, as with the Samy worm.20 To avoid this vulnerability,

 developers should be trained to use frameworks properly and encode HTML output correctly.

 • Expression Language (EL) Injection. EL injection affects OGNL and other expression languages, and is a

 newer vulnerability type compared to others on the list. It is very attractive to attackers because a

 successful exploit leads to a complete host takeover. EL injection gained a lot of notoriety for causing

 several extremely large and public breaches, and they are rated as high severity vulnerabilities by

 Contrast Labs.

 Only 1% of applications in Contrast Labs’ dataset had EL injection vulnerabilities over the past year, but

 25% of applications recorded attacks targeting the vulnerability. In addition, several known EL injection

 CVEs in open-source frameworks such as Struts and Spring are heavily targeted by attackers. There are

 also almost certainly a number of these vulnerabilities that have not been discovered. Nothing can be

 done about EL injection except to keep frameworks up to date and implement RASP protection to

 sandbox EL evaluation to prevent potential malicious attacks.

 • Command Injection. Command injection attacks are the second most common attack type, but the

 exploitability for command injection is just 0.3%. Even though it is obviously a favorite of attackers,

 there are exceedingly few vulnerabilities out there to find. Despite all the effort, command injection

 attacks were extremely unlikely to target vulnerable code in the target applications.

43

 Despite the extremely low odds of success, adversaries keep trying because of the potential payoff. A

 successful attack could result in a complete takeover of the entire host and all the code and data on it.

 Command injection attacks are the most direct route to a massive compromise: If successful, they

 provide a hacker with the ability to run commands against the underlying system and enable them to

 possibly establish a foothold in the infrastructure to pivot horizontally to other systems as well. As a

 potential prevention, organizations should consider banning the direct use of OS commands and

 implementing RASP to sandbox their execution.

 • XML External Entity (XXE) Injection. XXE injection is the fourth most prevalent serious vulnerability,

 according to Contrast Labs data. Many applications and particularly APIs parse untrusted XML

 documents and unless they take specific actions, attackers can access internal files, URLs, and

 possibly even execute commands on the host system. XXE injection is somewhat overlooked by

 attackers today, with just 2% of applications reporting an attack. But as APIs are increasingly targeted

 by attackers, Contrast Labs expects to see the number of public breaches based on XXE injection

 increase.21

 To offset the risks, organizations should consider a policy disallowing the use of XML parsers unless

 doctype processing is disabled. However, there is nothing an organization can do about this vulnerability

 in open-source libraries and frameworks except to keep them up to date and to enable RASP to prevent

 XML documents with external entities from being parsed.

44

452020 APPLICATION SECURITY OBSERVABILITY REPORT

09
CONCLUSION

09

46

The “2020 Application Security Observability Report” contains real-world data from real organizations.

Based on the aforementioned data insights, Contrast Labs offers the following takeaways and

recommendations:

DEALING WITH VULNERABILITIES:

 • Vulnerabilities should continue to be a key focus for security and development teams, with

 more than one in 10 having six or more serious vulnerabilities.

 • Understanding the risk level of each vulnerability helps security and development teams to

 prioritize the most important fixes based on the probability that it could cause problems. For

 example, the realization that sensitive data exposure vulnerabilities are high volume but

 relatively low in risk (Figure 2) can help organizations prioritize other, more risky vulnerability

 types.

 • Identifying and remediating vulnerabilities early in the process helps organizations avoid the

 time and cost of remediating them later. Contrast Security customers resolve 79% of serious

 vulnerabilities in the first 30 days (Figure 11).

09 | C O NCLUS IO N

2020 APPLICATION SECURITY OBSERVABILITY REPORT

 • Addressing vulnerabilities before moving an application into production is key, as the high

 volume of attacks means that any remaining vulnerabilities put an organization at great risk.

 The volume is trending upward for each of the five most common attack types (Figure 24).

 Command injection attacks more than tripled in prevalence over the past year.

MOVING BEYOND LEGACY APPROACHES TO APPSEC:

 • Practicing careful version control with open-source libraries is critical, as it is best to use

 the library version that addresses the most CVEs without potentially causing problems in other

 areas. Organizations still have significant room for improvement in this regard (Figure 22).

 • Decreasing security debt not only reduces stress on development, security, and operations

 teams but it also greatly improves time to resolution and actually results in fewer new

 vulnerabilities being identified. This can be accomplished with a combination of continuous

 testing, RASP protection for applications in production that still have vulnerabilities, and

 clearing backlogged vulnerabilities according to the risk they pose.

 • Balancing security efforts across the SDLC improves greatly on the traditional model of

 conducting a big security test immediately before deployment. Instead, the best model shifts

 left by empowering developers to participate effectively through continuous testing, and

 extends right into production with visibility and exploit protection.

As the threat landscape becomes increasingly risky for organizations,22 it is imperative that corporate

software applications work properly and do not allow for intrusions of any kind. Companies that take a

strategic, comprehensive approach to AppSec security do so because they have detailed data to help

them succeed—data that is only provided by tools from Contrast. These organizations are setting

themselves up for success—in delivering secure applications, and in protecting and enhancing the

bottom line.

472020 APPLICATION SECURITY OBSERVABILITY REPORT

Jeff brings more than 20 years of security leadership experience as

Co-Founder and Chief Executive Officer of Contrast. Previously, Jeff

was Co-Founder and Chief Executive Officer of Aspect Security, a

successful and innovative application security consulting company

acquired by Ernst & Young. Jeff is also a founder and major contributor

to OWASP, where he served as Global Chairman for eight years and

created the OWASP Top 10, OWASP Enterprise Security API, OWASP

Application Security Verification Standard, XSS Prevention Cheat Sheet,

and many other widely adopted free and open projects. Jeff has a BA

from the University of Virginia, an MA from George Mason, and a JD

from Georgetown.

JEFF WILLIAMS
CTO AND CO-FOUNDER,
CONTRAST SECURITY

David is an experienced application security professional with over 20

years in cybersecurity. In addition to serving as the chief information

security officer, David leads the Contrast Labs team that is focused on

analyzing threat intelligence to help enterprise clients develop more

proactive approaches to their application security programs.

Throughout his career, David has worked within multiple disciplines in

the security field—from application development, to network

architecture design and support, to IT security and consulting, to

security training, to application security. Over the past decade, David

has specialized in all things related to mobile applications and

securing them. He has worked with many clients across industry

sectors, including financial, government, automobile, healthcare, and

retail. David is an active participant in numerous bug bounty

programs.

482020 APPLICATION SECURITY OBSERVABILITY REPORT

CONTR IB UT O RS

DAVID LINDNER
CHIEF INFORMATION
SECURITY OFFICER,
CONTRAST SECURITY

Brian possesses nearly 20 years of experience in various roles in IT

and over a decade in application development and security. In addition

to teaching a full load of classes at Union University, Brian serves as a

part-time management consultant and advisor for Contrast Labs. He

worked on the Trustworthy Computing team at Microsoft and served

as a project lead and active contributor for SAMM v1.1-2.0 and

OWASP Top 10 2017. He is a popular speaker at numerous

conferences and online events, having presented at InfoSec World,

Cloud Security World, and numerous OWASP conferences and

meetings. Brian is also an author of various papers and is currently

researching writing a book on application security. He holds a long list

of cybersecurity and IT certifications as well as a master in business

administration and bachelors in computer science from Union

University.

Katharine is a driving force in developing and building data analytics

frameworks for Contrast—including Contrast Labs—and turning data

into actionable narratives and insights for internal and external

customers. Katharine worked as an analyst, consultant, and project

manager in both private and nonprofit organizations. Before launching

a career in data science. Katharine worked for three years as a

mathematics teacher in the Teach for America program. Katharine

holds undergraduate and graduate degrees from The Johns Hopkins

University.

BRIAN GLAS
ASSISTANT PROFESSOR OF
COMPUTER SCIENCE,
UNION UNIVERSITY

KATHARINE WATSON
DATA SCIENTIST,
CONTRAST SECURITY

492020 APPLICATION SECURITY OBSERVABILITY REPORT

Patrick founded and serves as the editor in chief for the Inside Appsec

podcast and leads the content marketing and PR/communications

team at Contrast. He has more than a decade and a half of experience

in various senior marketing and research roles within the cybersecurity

sector and is the recipient of numerous corporate and industry awards.

After leaving the corporate world to start his own agency, Patrick

joined Fortinet to lead content marketing and research. His many

duties included serving as the editor in chief for The CISO Collective.

Patrick’s roots in cybersecurity go back to Symantec, where he spent

nearly a decade in senior marketing roles of increasing scope and

responsibility. While at Symantec, Patrick served as the editor in chief

for CIO Digest, an award-winning digital and print publication

containing strategies and insights for the technology executive.

MHM ContentSource specializes in marketing research and writing

projects for clients across the technology sector. Mark has 15 years of

experience in research and content marketing across the technology

sector, as both an employee and a consultant. He has authored

numerous research reports, white papers, and magazine features and

produced dozens of marketing videos and a podcast series. His work

has been published by leading technology brands such as Symantec,

LivePerson, PRO Unlimited, Finastra, Fortinet, Lastline, and Contrast

Security, among others.

MARK MULLINS
FOUNDER AND PRINCIPAL,
MHM CONTENTSOURCE

PATRICK SPENCER,
PH.D.
EDITOR IN CHIEF,
INSIDE APPSEC PODCAST

HEAD OF CONTENT AND
PR/COMMUNICATIONS,
CONTRAST SECURITY

502020 APPLICATION SECURITY OBSERVABILITY REPORT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

512020 APPLICATION SECURITY OBSERVABILITY REPORT

"OWASP Top Ten," Open Web Application Security Project, accessed May 18, 2020.
Christopher Mims, "Every Company Is Now a Tech Company," The Wall Street Journal, December 4, 2018.
Alicia Lee, "Wanted urgently: People who know a half century-old computer language so states can process unemployment claims,"
CNN, April 8, 2020.
Randy Bean, "How FinTech Initiatives Are Driving Financial Services Innovation," Forbes, July 10, 2018.
Mukesh Soni, "Defect Prevention: Reducing Costs and Enhancing Quality," iSixSigma, accessed April 9, 2020.
Taylor Armerding, "What is security debt, and how do I get out of it?" Security Boulevard, March 16, 2020.
"State-of-the-Art RASP Is AppSec Exactly Where It Is Needed—in Production Runtimes," Contrast Security, accessed June 16, 2020.
Katharine Watson, "How Do Teams Stay Afloat in an Ocean of Vulnerabilities? They Remediate Faster (3.0X Faster!),"
Contrast Security Blog Post, May 6, 2019.
"State of Software Security X," Veracode, accessed May 18, 2020.
"State of Software Security Volume 9," Veracode, accessed May 18, 2020.
Amy DeMartine and Jennifer Adams, "Application Security Market Will Exceed $7 Billion By 2023," Forrester, updated March 29, 2019.
Liam Tung, "Open-source security: This is why bugs in open-source software have hit a record high," ZDNet, March 13, 2020.
"Security Vulnerabilities," CVE Details, accessed May 18, 2020.
Robert Lemos, "The state of vulnerability reports: What the CVE surge means," TechBeacon, accessed May 18, 2020.
Amy DeMartine and Jennifer Adams, "Application Security Market Will Exceed $7 Billion By 2023," Forrester, updated March 29, 2019.
"What is the reason for the increase in CVEs since 2017?" StackExchange, February 14, 2019.
Robert Lemos, "The state of vulnerability reports: What the CVE surge means," TechBeacon, accessed May 18, 2020.
Nate Swanner, "Bug Bounty Payouts Way Up as Companies Rush to Patch Holes," Dice, August 5, 2019.
David Lindner, "Contrast Labs: Mapping Risk Profiles for Select OWASP Top 10 Vulnerabilities to Understand Their AppSec Risk,"
Contrast Security Blog, May 19, 2020.
"Samy (computer worm)," Wikipedia, accessed June 16, 2020.
“The State of API 2019 Report," SmartBear, accessed June 16, 2020.
Patrick Spencer, "43% of Data Breaches Connected to Application Vulnerabilities: Assessing the AppSec Implications,"
Contrast Security Blog, May 20, 2020.

https://owasp.org/www-project-top-ten/
https://www.wsj.com/articles/every-company-is-now-a-tech-company-1543901207
https://edition.cnn.com/2020/04/08/business/coronavirus-cobol-programmers-new-jersey-trnd/index.html
https://www.forbes.com/sites/ciocentral/2018/07/10/how-fintech-initiatives-are-driving-financial-services-innovation/#322665f954fa
https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/
https://securityboulevard.com/2020/03/what-is-security-debt-and-how-do-i-get-out-of-it/
https://www.contrastsecurity.com/hubfs/State-of-the_eBook_042020_Final.pdf?hsCtaTracking=ebbbe84b-2386-4487-85d2-355ad7abb2ac%7C53a88d5d-5b2d-405c-834f-8715841f8d2c
https://www.contrastsecurity.com/security-influencers/how-do-teams-stay-afloat-in-an-ocean-of-vulnerabilities-they-remediate-faster-3.0x-faster
https://www.veracode.com/state-of-software-security-report
https://www.veracode.com/sites/default/files/pdf/resources/ipapers/state-of-software-security-volume-9/index.html?mkt_tok=eyJpIjoiWVdFeU16SXlZak0wT1RFNSIsInQiOiJaMkoyajkwclwvQTNiejNEXC9qb3pCek8yQlA2TkhveDhEZ29ab012SDN2QWhOVGlDZ2grREgyZkNNbnA1ZW1FdFVpTWZzdFIxUXZqb05HbEU0VDU5VXVPV0xvSkhNSGhOQ2tvOXAxbm52ZmdZZ0JyNGFQTHRnaTVmMHZaekVhSGU4In0%3D
https://www.forrester.com/report/Application+Security+Market+Will+Exceed+7+Billion+By+2023/-/E-RES144054
https://www.zdnet.com/article/open-source-security-this-is-why-bugs-in-open-source-software-have-hit-a-record-high/
https://www.cvedetails.com/vulnerability-list/
https://techbeacon.com/security/state-vulnerability-reports-what-cve-surge-means
https://www.forrester.com/report/Application+Security+Market+Will+Exceed+7+Billion+By+2023/-/E-RES144054
https://security.stackexchange.com/questions/203578/what-is-the-reason-for-the-increase-of-cves-since-2017
https://techbeacon.com/security/state-vulnerability-reports-what-cve-surge-means
https://insights.dice.com/2019/08/05/bug-bounty-payouts/
https://www.contrastsecurity.com/security-influencers/mapping-risk-profiles-for-owasp-top-10-vulnerabilities
https://en.wikipedia.org/wiki/Samy_(computer_worm)
https://smartbear.com/resources/ebooks/the-state-of-api-2019-report/
https://www.contrastsecurity.com/security-influencers/assessing-appsec-implications

Contrast Security is the world’s leading provider of security technology that enables software applications to protect themselves against
cyberattacks, heralding the new era of self-protecting software. Contrast's patented deep security instrumentation is the breakthrough
technology that enables highly accurate assessment and always-on protection of an entire application portfolio, without disruptive
scanning or expensive security experts. Only Contrast has sensors that work actively inside applications to uncover vulnerabilities,
prevent data breaches, and secure the entire enterprise from development, to operations, to production.

